79 research outputs found

    RichMol: A general variational approach for rovibrational molecular dynamics in external electric fields

    Get PDF
    A general variational approach for computing the rovibrational dynamics of polyatomic molecules in the presence of external electric fields is presented. Highly accurate, full-dimensional variational calculations provide a basis of field-free rovibrational states for evaluating the rovibrational matrix elements of high-rank Cartesian tensor operators, and for solving the time-dependent Schr\"odinger equation. The effect of the external electric field is treated as a multipole moment expansion truncated at the second hyperpolarizability interaction term. Our fully numerical and computationally efficient method has been implemented in a new program, RichMol, which can simulate the effects of multiple external fields of arbitrary strength, polarization, pulse shape and duration. Illustrative calculations of two-color orientation and rotational excitation with an optical centrifuge of NH3_3 are discussed

    General variational approach to nuclear-quadrupole coupling in rovibrational spectra of polyatomic molecules

    Full text link
    A general algorithm for computing the quadrupole-hyperfine effects in the rovibrational spectra of polyatomic molecules is presented for the case of ammonia (NH3_3). The method extends the general variational approach TROVE by adding the extra term in the Hamiltonian that describes the nuclear quadrupole coupling, with no inherent limitation on the number of quadrupolar nuclei in a molecule. We applied the new approach to compute the nitrogen-nuclear-quadrupole hyperfine structure in the rovibrational spectrum of NH3_3. These results agree very well with recent experimental spectroscopic data for the pure rotational transitions in the ground vibrational and ν2\nu_2 states, and the rovibrational transitions in the ν1\nu_1, ν3\nu_3, 2ν42\nu_4, and ν1+ν3\nu_1+\nu_3 bands. The computed hyperfine-resolved rovibrational spectrum of ammonia will be beneficial for the assignment of experimental rovibrational spectra, further detection of ammonia in interstellar space, and studies of the proton-to-electron mass variation

    Detecting chirality in molecules by linearly polarized laser fields

    Get PDF
    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a {\pi} phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic non-rigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states

    ExoMol molecular line lists - XXVII: spectra of C2H4

    Get PDF
    A new line list for ethylene, 12^{12}C2_21^1H4_4 is presented. The line list is based on high level ab initio potential energy and dipole moment surfaces. The potential energy surface is refined by fitting to experimental energies. The line list covers the range up to 7000 cm−1^{-1} (1.43 μ\mum) with all ro-vibrational transitions (50 billion) with the lower state below 5000 cm−1^{-1} included and thus should be applicable for temperatures up to 700 K. A technique for computing molecular opacities from vibrational band intensities is proposed and used to provide temperature dependent cross sections of ethylene for shorter wavelength and higher temperatures. When combined with realistic band profiles (such as the proposed three-band model), the vibrational intensity technique offers a cheap but reasonably accurate alternative to the full ro-vibrational calculations at high temperatures and should be reliable for representing molecular opacities. The C2_2H4_4 line list, which is called MaYTY, is made available in electronic form from the CDS

    Field-induced diastereomers for chiral separation

    Get PDF
    A novel approach for the state-specific enantiomeric enrichment and the spatial separation of enantiomers is presented. Our scheme utilizes techniques from strong-field laser physics, specifically an optical centrifuge in conjunction with a static electric field, to create a chiral field with defined handedness. Molecular enantiomers experience unique rotational excitation dynamics and this can be exploited to spatially separate the enantiomers using electrostatic deflection. Notably, the rotational-state-specific enantiomeric enhancement and its handedness is fully controllable. To explain these effects, we introduce the conceptual framework of field-induced diastereomersfield\text{-}induced~diastereomers of a chiral molecule and perform robust quantum mechanical simulations on the prototypical chiral molecule propylene oxide (C3_3H6_6O), for which ensembles with an enantiomeric excess of up to 30 %30~\% were obtained

    Controlling rotation in the molecular-frame with an optical centrifuge

    Full text link
    We computationally demonstrate a new method for coherently controlling the rotation-axis direction in asymmetric top molecules with an optical centrifuge. Appropriately chosen electric-field strengths and the centrifuge's acceleration rate allow to generate a nearly arbitrary rotational wavepacket. For D2_2S and 2H-imidazole (C3_3H4_4N2_2) we created wavepackets at large values of the rotational quantum number JJ with the desired projections of the total angular momentum onto two of the molecules' principal axes of inertia. One application of the new method is three-dimensional alignment with a molecular axis aligned along the laser's wave vector, which is important for the three-dimensional imaging of molecules yet not accessible in standard approaches. The simultaneous orientation of the angular momentum in the laboratory frame and in the molecular frame could also be used in robust control of scattering experiments
    • …
    corecore